

Lake Roe Gold Project, WA

Exceptional results of up to 20.5g/t Au highlight strong potential to grow underground Resource

Highlights

- Strong infill and extensional results from each of the four reported diamond drill holes highlight the potential for further growth in the 413,000oz underground Resource# at the Bombora deposit within Lake Roe
- ▼ The Bombora underground Resource is below the 800,000oz open pit Resource#
- × Results from the four holes include:

Hole No.		From	То	Intercept @ g/t gold
BBDD0109		361.5	391.35	29.85m @ 0.82
	incl	385	391.35	6.35m @ 2.09
	incl	387	388.85	1.85m @ 4.79
		562.5	577	14.5m @ 3.27
	incl	567.7	571.7	4.0m @ 4.12
	incl	575	576.4	1.4m @ 9.45
	incl	575	575.4	0.4m @ 24.81
		668.7	670.3	1.6m @ 3.15
BBDD0109W2		674	683	9.0m @ 10.52
Wedge starting 597.2m	incl	675.7	683	7.3m @ 12.94
	incl	675.7	681.5	5.8m @ 16.17
	and	677	681.5	4.5m @ 20.56
	incl	679	681.5	2.5m @ 31.39
BBDD0111		188.7	192.1	3.4m @ 2.19
	incl	189.75	191.45	1.7m @ 3.41
BBDD0111W1		314.38	323.34	8.96m @ 1.51
Wedge starting 255.2m	incl	321.52	323.34	1.82m @ 5.58
	incl	322.13	323.34	1.21m @ 7.46
	incl	322.13	322.45	0.32m @ 22.61
		410.67	414.47	3.8m @ 3.01
	incl	411.26	411.95	0.69m @ 9.38
	and	413.11	413.52	0.41m @ 4.69
		437	438	1.0m @ 6.14
	incl	437.44	438	0.56m @ 9.46
		475.83	477.09	1.26m @ 4.64
		659	661.92	2.92m @ 3.15
	incl	661	661.92	0.92m @ 9.59

Table 1: Significant Intercepts

- Drilling for the next Resource update is well advanced with assay results pending for eight diamond drill holes and 87 reverse circulation (RC) holes
- Drilling currently involves two diamond rigs; an RC drill rig is scheduled to start in approximately four weeks and an aircore rig is scheduled to commence in two weeks

Breaker Resources NL (ASX: BRB, the Company) is pleased to report additional high-grade drill intersections at the 1.4Moz# Lake Roe Gold Project, 100km east of Kalgoorlie in Western Australia.

Each of the four 80m-spaced diamond drill holes returned multiple infill or extensional intersections from a 2km-long, 150m wide array of regular high-grade gold lodes situated below the northern part of the open pit Resource at the Bombora deposit (Figures 1 to 3).

The results demonstrate scope to significantly expand the 413,000oz maiden underground Resource# announced in late April 2021. The BBDD0109W2 and BBDD0111W1 intersections include new flat and steep lodes situated outside the Resource.

Drilling for the next Resource update is well-advanced (Figure 2). Assay results at Bombora are pending for eight diamond drill holes targeting high-grade extensions below the open pit Resource and outside the underground Resource (Figures 2 and 3).

Assay results are also pending for 87 reconnaissance RC drill holes designed to test the potential for shallow discovery over the 9km between the Crescent-Kopai and Claypan deposits. Maiden Resources at Crescent-Kopai and Claypan announced in April 2021, in conjunction with extensive areas of anomalous aircore gold with little RC and diamond drilling, indicate an emerging gold district.

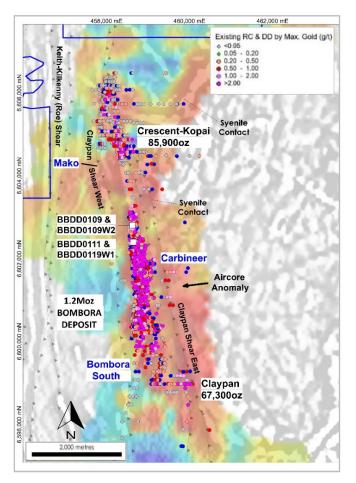
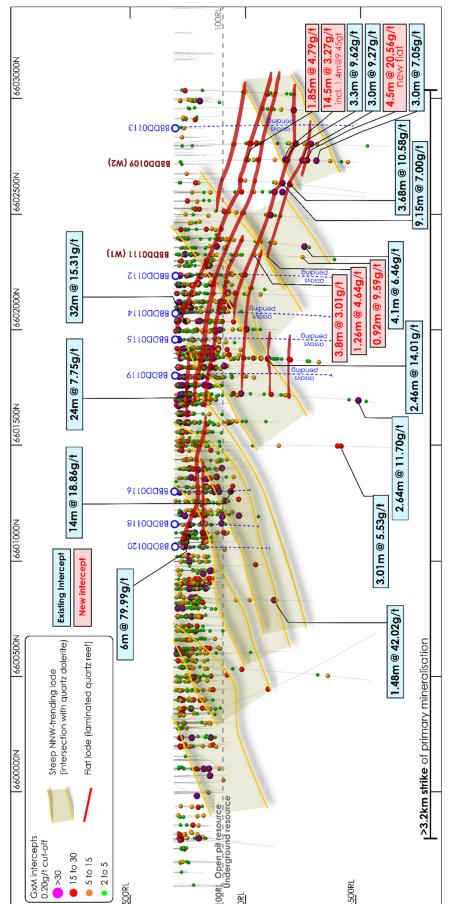
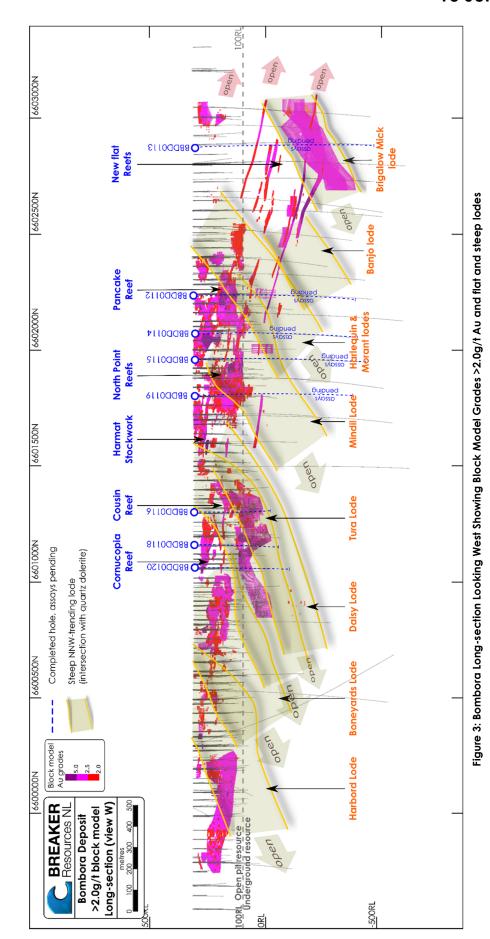




Figure 1: RC and Diamond Drilling Colour-coded by Maximum Gold (g/t) on Aircore Maximum Gold Image and Aeromagnetics

Drilling Program

The reported drilling is part of a major program designed to expand the 1.4Moz global Resource* at Lake Roe to build critical mass for a large new gold development. Details of the drilling are provided in Appendix 1 and Annexure 1.

The Company is running two diamond drill rigs targeting two areas below the open pit Resource at Bombora: a 2km-long, 150m-wide array of regular high-grade gold lodes below the northern part of the deposit, and the southern extension of the major sub-vertical mineralised "steep" Tura and Daisy lodes.

RC drilling to test multiple shallow extensional and discovery targets within the 9km-long gold system is planned to restart in approximately four weeks. Aircore drilling to test multiple shallow targets inside and outside the 9km gold system is expected to start in two weeks.

Results/Analysis

Results are reported for four 80m-spaced infill diamond drill holes: BBDD0109, BBDD0109W2, BBDD0111 and BBDD0111W1 for a total of 1,994m (Figures 1 to 3). A list of significant results is provided in Appendix 1. More significant intersections are shown in Figure 2.

Each of the four diamond drill holes returned multiple intersections.

BBDD0109 confirmed continuity of flat lode mineralisation.

BBDD0109W2 intersections are outside the Resource and include a new flat shear, part of the flat lode array which connects to the Brigalow Mick steep lode (Figure 2). This hole confirms that there is significant high grade gold yet to be captured in the Resource in this area.

BBDD0111 confirmed continuity of flat lode mineralisation.

BBDD0111W1 intersected gold mineralisation associated with new flat and steep structures outside the Resource. The intercepts confirm new lodes outside the Resource that are open to the south. BBDD0111W1 also intersected a new steep lode with visible gold at depth. This steep lode, named the Banjo lode, is located in between the Morant steep lode and the Brigalow Mick steep lode (Figure 3). The Banjo lode was previously intersected in a handful of widely spaced holes. It shows consistent grade and fills the gap in the pattern of stacked steep lodes, confirming the repetition of mineralised structures at Bombora.

About Breaker Resources NL/Lake Roe Gold Project

Breaker Resources NL (ASX BRB) is unlocking the potential of a major new greenfields gold district at its 100%-owned, 680km² Lake Roe Gold Project, located 100km east of Kalgoorlie, Western Australia. The project is situated between two operating gold mines on a recently identified southern extension of the 22Moz Laverton Tectonic Zone.

After discovery of the Bombora deposit in 2016, drilling identified a typical Archean, multi-lode gold deposit hosted by dolerite with some of the best drill hits in Western Australia, such as 17m @ 15.85g/t, 7m @ 61.78g/t and 32m @ 15.31g/t (ASX Release 27 July 2020).

Extensive drilling to create an early development option established a 1.4Moz Resource# grading 1.5g/t Au which is open in all directions. The gold occurs in a 150m-wide zone over a 3km distance, starting 5m from surface. A 2.7km-long single open pit scenario is still growing.

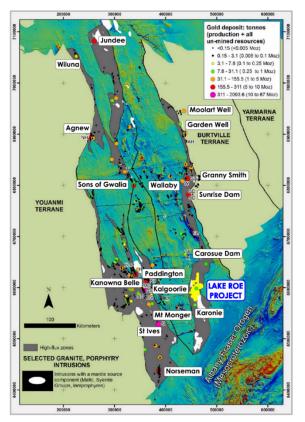


Figure 4: Lake Roe Project Location

Extensional drilling since 2020 demonstrates that Bombora is part of a 9km gold system with multi-million ounce growth potential, based on several new developments:

- Three satellite discoveries Crescent-Kopai, Claypan and Carbineer;
- Confirmation of the underground mining potential following the identification of 2km of continuous high-grade lodes below the open pit Resource;
- Aircore drilling, which indicates the gold potential extends over a 30km strike length many aircore anomalies within the 9km gold system are still untested; and
- Confirmation that the gold lodes are part of a regular kilometric-scale fault pattern.

Authorised by the Board of Directors

Tom Sanders

Executive Chairman Breaker Resources NL

10 June 2021

For further information on Breaker Resources NL please visit the Company's website at www.breakerresources.com.au, or contact:

Investors/Shareholders

Tom Sanders

Tel: +61 8 9226 3666

Email: breaker@breakerresources.com.au

<u>Media</u>

Paul Armstrong/Nicholas Read

Read Corporate

Tel: +61 8 9388 1474

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Targets and Exploration Results is based on and fairly represents information and supporting documentation compiled by Tom Sanders and Alastair Barker, Competent Persons, who are Members of the Australasian Institute of Mining and Metallurgy. Mr Sanders and Mr Barker are executives of Breaker Resources NL and their services have been engaged by Breaker on an 80% of full time basis; they are also shareholders in the Company. Mr Sanders and Mr Barker have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Sanders and Mr Barker consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

The information in this report that relates to the Mineral Resources and Exploration Targets is based on information announced to the ASX on 29 April 2021. Breaker confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements, and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply.

Open Pit Resource Above 100mRL	Cut-off (g/t Au)	Category	Tonnes (millions)	Grade (g/t Au)	Ounces	% Indicated
Bombora	0.5	Ind Inf Subtotal	15.4 2.3 17.7	1.43 1.2 1.4	711,000 92,000 803,000	89%
Crescent-Kopai Claypan	0.5 0.5	Inf Inf Total	2.8 2.1 22.6	0.9 1.0 1.3	86,000 67,000 956,000	74 %
Underground Resource Below 100mRL	Cut-off (g/t Au)	Category	Tonnes (millions)	Grade (g/t Au)	Ounces	% Indicated
Underground Resource Below 100mRL		Category Inf+Ind			Ounces 414,000	% Indicated
Underground Resource Below 100mRL Bombora	(g/t Au)	• •	(millions)	(g/t Au)		, , , , , , , , , , , , , , , , , , , ,
	(g/t Au)	Inf+Ind	(millions) 5.3	(g/t Au) 2.4	414,000	16%
	(g/t Au) 1.0 2.0	Inf+Ind Inf+Ind	(millions) 5.3 2.5	(g/t Au) 2.4 3.6	414,000 291,000	16% 17%

Notes:

 All figures rounded to reflect the appropriate level of confidence (apparent differences may occur due to rounding)

APPENDIX 1: Significant Drilling Results

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim	From	То	Length	Gold g/t	gm	Sample
BBDD0109	Bombora	6602730	458562	314	696.0	-57	89	31	36	5	0.70	3.5	Half core
				includin				31	35	4	0.85	3.4	Half core
				includin				31	34	3	1.05	3.2	Half core
				includin I	g 			32 54	33 55	1	1.60 0.45	1.6 0.5	Half core Half core
								66.8	69	2.2	0.43	1.2	Half core
				includin	a a			67.9	69	1.1	0.89	1.0	Half core
				includin				67.9	68.2	0.3	2.68	0.8	Half core
					Ĭ			275.75	280.65	4.9	0.33	1.6	Half core
				includin	g			275.75	276.92	1.17	1.00	1.2	Half core
				includin	g			276.3	276.92	0.62	1.12	0.7	Half core
				<u> </u>				280.2	280.65	0.45	0.63	0.3	Half core
				includin				361.5	391.35	29.85	0.82	24.5	Half core
				includin includin				363.15 363.15	373.65 365.4	10.5 2.25	0.89	9.3 2.5	Half core Half core
				includin				363.75	364.4	0.65	2.43	1.6	Half core
				and	9			370.4	373.65	3.25	1.75	5.7	Half core
				includin	g			370.4	373.2	2.8	1.92	5.4	Half core
				includin	g			371.7	372.35	0.65	3.39	2.2	Half core
				and				385	391.35	6.35	2.09	13.3	Half core
				includin				385	388.85	3.85	2.86	11.0	Half core
				includin				387	388.85	1.85	4.79	8.9	Half core
				includin	g			387.75	388.85	1.1	5.54	6.1	Half core
				and				390.3 399	391.35 400	1.05	1.56 0.81	0.8	Half core Half core
				1				407	440.5	33.5	0.34	11.4	Half core
				includin	a			407	413	6	0.83	5.0	Half core
				includin				407	408	1	1.78	1.8	Half core
				and				412	413	1	3.18	3.2	Half core
				and				423	425.6	2.6	1.06	2.8	Half core
				includin	g			424	425.6	1.6	1.33	2.1	Half core
				and				433	434	1	1.00	1.0	Half core
				and				440	440.5	0.5	2.42	1.2	Half core
				I includin				446.2 446.2	453 446.5	6.8 0.3	0.37 4.01	2.5	Half core Half core
				and	9			452	453	1	0.82	0.8	Half core
				1				496	497	i	0.85	0.9	Half core
								511.4	515.2	3.8	0.73	2.8	Half core
				includin	g			512.8	515.2	2.4	1.03	2.5	Half core
				includin	g		,	512.8	513.5	0.7	1.88	1.3	Half core
								539.1	539.8	0.7	1.37	1.0	Half core
								559	580	21	2.42	50.8	Half core
				includin includin				562.5 562.5	580 577	17.5 14.5	2.85 3.27	49.9 47.4	Half core Half core
				includin				562.5	563	0.5	5.08	2.5	Half core
				and	9			564	565.7	1.7	4.71	8.0	Half core
				includin	g			564	565	1	5.16	5.2	Half core
				and				567.7	571.7	4	4.12	16.5	Half core
				and				573.5	573.9	0.4	7.86	3.1	Half core
				and				575	576.4	1.4	9.45	13.2	Half core
				includin I	g I			575	575.4	0.4	24.81	9.9	Half core
				I includin				587.55 587.55	595.25 588.05	7.7 0.5	0.39 2.67	3.0 1.3	Half core Half core
					y I		1	593	594	1	1.15	1.1	Half core
								607.8	608.5	0.7	0.56	0.4	Half core
								645.6	648.2	2.6	0.98	2.5	Half core
				includin	g			645.6	647.85	2.25	1.10	2.5	Half core
				includin				646.25	647.85	1.6	1.24	2.0	Half core
				includin	g			647.55	647.85	0.3	2.19	0.7	Half core
				<u> </u>	L		ļ	668.7	670.3	1.6	3.15	5.0	Half core
		//00700	450570	includin			00	668.7	670	1.3	3.35	4.3	Half core
BBDD0109W1	h 2021	6602730	458562	314	927.8	-57	89						
Reported 9 Marc BBDD0109W2	11 2021	6602730	458562	314	932.6	-57	89	674	683	9	10.52	94.7	Half core
	0109W1 Starting 597.2m	0002/00		includin		- 57		675.7	683	7.3	12.94	94.4	Half core
cage on boob	5.57 TT Sidning 577.2111			includin				675.7	681.5	5.8	16.17	93.8	Half core
				and	<u> </u>			677	681.5	4.5	20.56	92.5	Half core
				includin				679	681.5	2.5	31.39	78.5	Half core

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim	From	То	Length	Gold g/t	gm	Sample
	i lospeci	NOIII	LUSI	N.L	pepiii	Ыþ	74111		693.3		_	9m 0.6	_
								692 707	709.65	1.3 2.65	0.43	0.6	Half core Half core
1				including	a			707	707.83	0.8	0.66	0.5	Half core
					9			746	747	1	0.54	0.5	Half core
								768	769	1	0.47	0.5	Half core
								785.95	802	16.05	0.44	7.0	Half core
				including				785.95	787	1.05	1.01	1.1	Half core
				including				793 796	802 802	9	0.61	5.5	Half core
				including				800	801	6	1.19	1.2	Half core Half core
					9 [816	834.7	18.7	0.18	3.4	Half core
				including	a			822	823	1	0.75	0.8	Half core
								834.4	834.7	0.3	2.84	0.9	Half core
								842.85	843.15	0.3	0.99	0.3	Half core
				<u> </u>				854	855.15	1.15	1.83	2.1	Half core
				including	g			854.85	855.15	0.3	6.66	2.0	Half core
				including	7			886 886	889.2 887	3.2	2.56 3.05	8.2 3.0	Half core Half core
				and	9			888.46	889.2	0.74	3.47	2.6	Half core
BBDD0110/0110	W1	6602593	458572	315	422.8	-56	89	000.10	007.12	0.7 .	0.17	2.0	11411 5515
Reported 9 Marc													
BBDD0111		6602323	458584	315	320.5	-58	89	41.5	46.3	4.8	0.54	2.6	Half core
				including				44.5	46.3	1.8	1.25	2.3	Half core
		1		including	g		I	44.5	45	0.5	3.08	1.5	Half core
		+		including	7			74 74.53	75 75	0.47	0.64	0.6	Half core Half core
				Including	g			181	192.1	11.1	0.75	8.3	Half core
				including	7			188.7	192.1	3.4	2.19	7.5	Half core
				including				189.75	192.1	2.35	2.80	6.6	Half core
				including				189.75	191.45	1.7	3.41	5.8	Half core
				including	g			189.75	190.27	0.52	4.50	2.3	Half core
				and				190.86	191.45	0.59	5.23	3.1	Half core
								196.74	202.52	5.78	1.01	5.8	Half core
				including				199.07	202.52	3.45	1.52	5.3	Half core
				including	g		l	199.07 275.92	200 276.77	0.93 0.85	3.54 0.50	3.3 0.4	Half core Half core
								273.72	293	2	0.57	1.1	Half core
				including	a			292	293	1	1.01	1.0	Half core
								308.7	313.44	4.74	0.86	4.1	Half core
				including	g			308.7	309.4	0.7	1.06	0.7	Half core
				and				312	313.44	1.44	2.22	3.2	Half core
				including	g		1	312.79	313.44	0.65	3.54	2.3	Half core
		((00000	450504	21.5	007.7		00	320	320.48	0.48	3.74	1.8	Half core
BBDD0111W1	0111 Starting 255.2m	6602323	458584	315	897.7	-58	89	276.68 291	277.29 294	0.61	1.64 0.69	2.1	Half core Half core
weage on BBDD	UTTT Starting 255.2m			including				291.59	294	2.41	0.84		
												2 0	
									294	1		2.0	Half core
				including				293 308.21	294 308.71		1.45	2.0 1.4 0.9	Half core Half core
								293		1	1.45	1.4	Half core
				including	g			293 308.21 314.38 314.38	308.71 323.34 314.69	1 0.5 8.96 0.31	1.45 1.80 1.51 7.01	1.4 0.9	Half core Half core Half core
				including including and	g g g			293 308.21 314.38 314.38 321.52	308.71 323.34 314.69 323.34	1 0.5 8.96 0.31 1.82	1.45 1.80 1.51 7.01 5.58	1.4 0.9 13.5 2.2 10.2	Half core Half core Half core Half core Half core
				including including and including	g g g			293 308.21 314.38 314.38 321.52 321.52	308.71 323.34 314.69 323.34 321.8	1 0.5 8.96 0.31 1.82 0.28	1.45 1.80 1.51 7.01 5.58 3.72	1.4 0.9 13.5 2.2 10.2	Half core Half core Half core Half core Half core Half core
				including including and including and	g			293 308.21 314.38 314.38 321.52 321.52 322.13	308.71 323.34 314.69 323.34 321.8 323.34	1 0.5 8.96 0.31 1.82 0.28 1.21	1.45 1.80 1.51 7.01 5.58 3.72 7.46	1.4 0.9 13.5 2.2 10.2 1.0 9.0	Half core
				including including and including	g			293 308.21 314.38 314.38 321.52 321.52 322.13 322.13	308.71 323.34 314.69 323.34 321.8 323.34 322.45	1 0.5 8.96 0.31 1.82 0.28 1.21 0.32	1.45 1.80 1.51 7.01 5.58 3.72 7.46 22.61	1.4 0.9 13.5 2.2 10.2 1.0 9.0	Half core
				including including and including and	g g g			293 308.21 314.38 314.38 321.52 321.52 322.13	308.71 323.34 314.69 323.34 321.8 323.34	1 0.5 8.96 0.31 1.82 0.28 1.21	1.45 1.80 1.51 7.01 5.58 3.72 7.46	1.4 0.9 13.5 2.2 10.2 1.0 9.0	Half core
				including including and including and including	g g g			293 308.21 314.38 314.38 321.52 321.52 322.13 322.13 338.55	308.71 323.34 314.69 323.34 321.8 323.34 322.45 340	1 0.5 8.96 0.31 1.82 0.28 1.21 0.32 1.45	1.45 1.80 1.51 7.01 5.58 3.72 7.46 22.61 2.46	1.4 0.9 13.5 2.2 10.2 1.0 9.0 7.2 3.6	Half core
				including and including and including includin	g g g g g			293 308.21 314.38 314.38 321.52 321.52 322.13 338.55 338.55 346 346	308.71 323.34 314.69 323.34 321.8 323.34 322.45 340 339.2 349.47 347	1 0.5 8.96 0.31 1.82 0.28 1.21 0.32 1.45 0.65 3.47	1.45 1.80 1.51 7.01 5.58 3.72 7.46 22.61 2.46 4.69 0.84 2.31	1.4 0.9 13.5 2.2 10.2 1.0 9.0 7.2 3.6 3.0 2.9 2.3	Half core
				including and including and including including	g g g g g			293 308.21 314.38 314.38 321.52 321.52 322.13 322.13 338.55 338.55 346 346.46	308.71 323.34 314.69 323.34 321.8 323.34 322.45 340 339.2 349.47 347	1 0.5 8.96 0.31 1.82 0.28 1.21 0.32 1.45 0.65 3.47 1 0.54	1.45 1.80 1.51 7.01 5.58 3.72 7.46 22.61 2.46 4.69 0.84 2.31 3.76	1.4 0.9 13.5 2.2 10.2 1.0 9.0 7.2 3.6 3.0 2.9 2.3 2.0	Half core
				including and including and including includin	g g g g g			293 308.21 314.38 314.38 321.52 321.52 322.13 322.13 338.55 338.55 346 346.46 353.45	308.71 323.34 314.69 323.34 321.8 323.34 322.45 340 339.2 349.47 347 347 354.23	1 0.5 8.96 0.31 1.82 0.28 1.21 0.32 1.45 0.65 3.47 1 0.54 0.78	1.45 1.80 1.51 7.01 5.58 3.72 7.46 22.61 2.46 4.69 0.84 2.31 3.76 0.48	1.4 0.9 13.5 2.2 10.2 1.0 9.0 7.2 3.6 3.0 2.9 2.3 2.0 0.4	Half core
				including and including and including including including including including	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			293 308.21 314.38 314.38 321.52 322.13 322.13 338.55 346 346 346,46 353.45 407	308.71 323.34 314.69 323.34 321.8 323.34 322.45 340 339.2 349.47 347 347 354.23 414.47	1 0.5 8.96 0.31 1.82 0.28 1.21 0.32 1.45 0.65 3.47 1 0.54 0.78	1.45 1.80 1.51 7.01 5.58 3.72 7.46 22.61 2.46 4.69 0.84 2.31 3.76 0.48 1.65	1.4 0.9 13.5 2.2 10.2 1.0 9.0 7.2 3.6 3.0 2.9 2.3 2.0 0.4 12.3	Half core
				including and including and including and including incl	9 9 9 9 9 9			293 308.21 314.38 314.38 321.52 321.52 322.13 322.13 338.55 346 346 346,46 353.45 407 410.67	308.71 323.34 314.69 323.34 321.8 322.45 340 339.2 349.47 347 347 354.23 414.47	1 0.5 8.96 0.31 1.82 0.28 1.21 0.32 1.45 0.65 3.47 1 0.54 0.78 7.47 3.8	1.45 1.80 1.51 7.01 5.58 3.72 7.46 22.61 2.46 0.84 2.31 3.76 0.48 1.65 3.01	1.4 0.9 13.5 2.2 10.2 1.0 7.2 3.6 3.0 2.9 2.3 2.0 0.4 12.3 11.4	Half core
				including and including and including	9 9 9 9 9 9			293 308.21 314.38 314.38 321.52 321.52 322.13 322.13 338.55 346 346.46 353.45 407 410.67 411.26	308.71 323.34 314.69 323.34 321.8 323.34 322.45 340 339.2 347 347 347 347 347 347 347 347 347 347	1 0.5 8.96 0.31 1.82 0.28 1.21 0.32 1.45 0.65 3.47 1 0.54 0.74 0.78	1.45 1.80 1.51 7.01 5.58 3.72 7.46 22.61 2.46 4.69 0.84 2.31 3.76 0.48 1.65 3.01 9.38	1.4 0.9 13.5 2.2 10.2 1.0 9.0 7.2 3.6 3.0 2.9 2.3 2.0 0.4 12.3 11.4 6.5	Half core
				including and including and including and including incl	9 9 9 9 9 9			293 308.21 314.38 314.38 321.52 322.13 322.13 322.13 338.55 346 346.46 353.45 407 410.62 411.26 413.11	308.71 323.34 314.69 323.34 321.8 323.34 322.45 340 339.2 347 347 347 347 347 347 347 347 347 347	1 0.5 8.96 0.31 1.82 0.28 1.21 0.32 1.45 0.65 3.47 1 0.54 0.78 7.47 3.8	1.45 1.80 1.51 7.01 5.58 3.72 7.46 22.61 2.46 4.69 0.84 2.31 3.76 0.48 1.65 3.01 9.38 4.69	1.4 0.9 13.5 2.2 10.2 1.0 9.0 7.2 3.6 3.0 2.9 2.3 2.0 0.4 12.3 11.4 6.5	Half core
				including and including and including	g g g g g g g g g g g g g g g g g g g			293 308.21 314.38 314.38 321.52 321.52 322.13 322.13 338.55 346 346.46 353.45 407 410.67 411.26	308.71 323.34 314.69 323.34 321.8 323.34 322.45 340 339.2 347 347 347 347 347 347 347 347 347 347	1 0.5 8.96 0.31 1.82 0.28 1.21 0.32 1.45 0.65 3.47 1 0.54 0.74 0.78	1.45 1.80 1.51 7.01 5.58 3.72 7.46 22.61 2.46 4.69 0.84 2.31 3.76 0.48 1.65 3.01 9.38	1.4 0.9 13.5 2.2 10.2 1.0 9.0 7.2 3.6 3.0 2.9 2.3 2.0 0.4 12.3 11.4 6.5	Half core
				including and including and including including including including including including including including and including and including and	g g g g g g g g g g g g g g g g g g g			293 308.21 314.38 321.52 321.52 322.13 322.13 322.13 338.55 346 346 353.45 407 410.67 411.26 413.11	308.71 323.34 314.69 323.34 321.8 323.34 322.45 340 339.2 349.47 347 347 347 347 347 347 347 347 347 3	1 0.5 8.96 0.31 1.82 0.28 1.21 0.32 1.45 0.65 3.47 1 0.78 7.47 3.8 0.69 0.41	1.45 1.80 1.51 7.01 5.58 3.72 7.46 22.61 2.46 4.69 0.84 2.31 3.76 0.48 1.65 3.01 9.38 4.69 6.14	1.4 0.9 13.5 2.2 10.2 1.0 9.0 7.2 3.6 3.0 2.9 2.3 2.0 0.4 12.3 11.4 6.5	Half core
				including and including and including including including including including including including including and including and including and	g g g g g g g g g g g g g g g g g g g			293 308.21 314.38 321.52 321.52 322.13 322.13 338.55 346 346.46 353.45 407 410.67 411.26 413.11 437 447.44 475.83 659	308.71 323.34 314.69 323.34 321.8 323.34 322.45 340 339.2 349.47 347 354.23 414.47 414.47 411.95 413.52 438 438 438 477.09 661.92	1 0.5 8.96 0.31 1.82 0.28 1.21 0.32 1.45 0.65 3.47 1 0.54 0.78 7.47 3.8 0.69 0.41 1 0.56 1.26 2.92	1.45 1.80 1.51 7.01 5.58 3.72 7.46 22.61 2.46 4.69 0.84 2.31 3.76 0.48 1.65 3.01 9.38 4.69 6.14 9.46 4.69	1.4 0.9 13.5 2.2 10.2 1.0 9.0 7.2 3.6 3.0 2.9 2.3 2.0 0.4 12.3 11.4 6.5 1.9 6.1	Half core
				including and including and including includin	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			293 308.21 314.38 314.38 321.52 322.13 322.13 322.13 338.55 346 346 345.45 407 410.67 411.21 437,44 475.83 659 660	308.71 323.34 314.69 323.34 321.8 323.34 322.45 340 339.2 349.47 347 354.23 414.47 414.47 411.52 438 438 477.09 661.92	1 0.5 8.96 0.31 1.82 0.28 1.21 0.32 1.45 0.65 3.47 1 0.54 0.78 7.47 3.8 0.69 0.41 1 0.56 1.26	1.45 1.80 1.51 7.01 5.58 3.72 7.46 22.61 4.69 0.84 2.31 3.76 0.48 1.65 3.01 9.38 4.69 6.14 9.46 4.69 6.14	1.4 0.9 13.5 2.2 10.2 1.0 9.0 7.2 3.6 3.0 2.9 2.3 2.0 0.4 12.3 11.4 6.5 1.9 6.1 5.3 5.9 9.2	Half core
				including and including and including including including including and including including and including including and including and including in	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			293 308.21 314.38 321.52 322.13 322.13 322.13 338.55 346 346.45 407 410.67 411.21 437 437.44 475.83 659 660 661	308.71 323.34 314.69 323.34 321.8 323.34 322.45 349.47 347 347 347 344.47 414.47 411.95 413.52 438 438 477.09 661.92 661.92	1 0.5 8.96 0.31 1.82 0.28 1.21 0.32 1.45 0.65 3.47 1 0.54 0.78 7.47 3.8 0.69 0.41 1 0.56 1.26 2.92	1.45 1.80 1.51 7.01 5.58 3.72 7.46 22.61 2.46 4.69 0.84 2.31 3.76 0.48 1.65 3.01 9.38 4.69 6.14 9.46 4.64 3.15 4.64 9.46 4.64 4.67 9.59	1.4 0.9 13.5 2.2 10.2 1.0 9.0 7.2 3.6 3.0 2.9 2.3 2.0 0.4 12.3 11.4 6.5 1.9 6.1 5.3 5.9 9.1 8.8	Half core
				including and including and including includin	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			293 308.21 314.38 321.52 321.52 322.13 338.55 338.55 346 407 411.26 413.11 437 437.44 475.83 659 660 661	308.71 323.34 314.69 323.34 321.8 323.34 322.45 349.47 347 347 347 3414.47 411.95 413.52 438 477.09 661.92 661.92 661.92	1 0.5 8.96 0.31 1.82 0.28 1.21 0.32 1.45 0.65 3.47 1 0.54 0.78 7.47 3.8 0.69 0.41 1 0.56 1.26 2.92 1.92	1.45 1.80 1.51 7.01 5.58 3.72 7.46 22.61 2.46 9.84 2.31 3.76 0.48 1.65 3.01 9.38 4.69 6.14 9.46 4.64 3.15 4.74 9.59 10.62	1.4 0.9 13.5 2.2 10.2 1.0 9.0 7.2 3.6 3.0 2.9 2.3 2.0 0.4 12.3 11.4 6.5 1.9 6.1 5.3 9.2 9.0 6.1	Half core
				including and including and including including including including and including including and including including and including and including in	9 9 9 9 9 9 9 9 9 9			293 308.21 314.38 321.52 322.13 322.13 322.13 338.55 346 346.45 407 410.67 411.21 437 437.44 475.83 659 660 661	308.71 323.34 314.69 323.34 321.8 323.34 322.45 349.47 347 347 347 344.47 414.47 411.95 413.52 438 438 477.09 661.92 661.92	1 0.5 8.96 0.31 1.82 0.28 1.21 0.32 1.45 0.65 3.47 1 0.54 0.78 7.47 3.8 0.69 0.41 1 0.56 1.26 2.92	1.45 1.80 1.51 7.01 5.58 3.72 7.46 22.61 2.46 4.69 0.84 2.31 3.76 0.48 1.65 3.01 9.38 4.69 6.14 9.46 4.64 3.15 4.64 9.46 4.64 4.67 9.59	1.4 0.9 13.5 2.2 10.2 1.0 9.0 7.2 3.6 3.0 2.9 2.3 2.0 0.4 12.3 11.4 6.5 1.9 6.1 5.3 5.9 9.1 8.8	Half core

ANNEXURE 1: JORC Code (2012 Edition) Table 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Holes were drilled to variable depth dependent upon observation from the supervising geologist. Diamond core is drilled HQ3, HQ or NQ2 dependent upon ground conditions. Core is cut in half by a diamond saw on site and half core is submitted for analysis except duplicate samples which are submitted as quarter core.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling was undertaken using Breaker Resources' (BRB) sampling protocols and QAQC procedures in line with industry best practice, including standard and duplicate samples.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple	Half core samples were taken with a diamond saw generally on 1m intervals or on geological boundaries where appropriate (minimum 0.4m to maximum of 1.2m).
	(eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	The 3kg composite samples were sent to MinAnalytical in Perth. Samples were sorted, dried, crushed to 10mm, pulverised to -75µm and split to produce a 50g charge for fire assay analysis for gold.
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Diamond core is HQ3, HQ or NQ2. Core is orientated using Reflex orientation tools, with core initially cleaned and pieced together at the drill site, and fully orientated by BRB field staff at Lake Roe.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Diamond drillers measure core recoveries for every drill run completed using either three or six metre core barrels. The core recovered is physically measured by tape measure and the length is recorded for every "run". Core recovery is calculated as a percentage recovery. Core recovery is confirmed by BRB staff
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	during core orientation activities on site and recorded into the database. Various diamond drilling additives (including muds and foams) have been used to condition the drill holes to maximise recoveries and sample quality.

Criteria	JORC Code explanation	Commentary
		Diamond drilling by nature collects relatively uncontaminated core samples. These are cleaned at the drill site to remove drilling fluids and cuttings to present clean core for logging and sampling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no significant loss of material reported in the mineralised parts of the diamond core to date.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were logged for lithology, alteration, mineralisation, structure, weathering, wetness and obvious contamination by a geologist. Data is then captured in a database appropriate for mineral resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Diamond core logging is both qualitative and quantitative in nature and captures downhole depth, colour, lithology, texture, mineralogy, mineralisation, alteration and other features of the samples.
		All cores are photographed in the core tray, with individual photographs taken of each tray both dry and wet.
	The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Core samples were cut in half using a conventional diamond core saw. Half core samples were collected for assay except duplicate samples which are quarter cut. An entire half core sample is retained and stored in core trays.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	n/a
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The samples were sent to an accredited laboratory for sample preparation and analysis. All samples were sorted, dried pulverised to -75µm to produce a homogenous representative 50g subsample for analysis. A grind quality target of 85% passing -75µm has been established.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Diamond core sample intervals are based on geological intervals typically less than a nominal 1m.
		Quality control procedures involved the use of Certified Reference Materials (CRM) along with sample duplicates (submitted as quarter core). Selected samples are also re-analysed to confirm anomalous results.

Criteria	JORC Code explanation	Commentary
		MinAnalytical's QAQC included insertion of certified standards, blanks, check replicates and fineness checks to ensure grind size of 85% passing -75µm as part of their own internal procedures.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half	Sample duplicates for diamond drilling (quarter core) are taken at least three times in every 100 samples.
	sampling.	All samples submitted were selected to weigh less than 3kg to ensure total preparation at the pulverisation stage.
		Duplicate sample results are reviewed regularly for both internal and external reporting purposes.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly give an accurate indication of mineralisation given the qualitative nature of the technique and the style of gold mineralisation sought.
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique used a 50g fire assay and is appropriate to detect gold mineralisation. The use of fire assay is considered a total assay.
tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any reported element concentrations.
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of	BRB inserted CRMs and duplicates into the sample sequence, which were used at the frequency of three CRMs and three duplicates per 100 samples.
	accuracy (ie. lack of bias) and precision have been established.	Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing -75µm was being attained. Laboratory QAQC involved the use of internal lab standards using CRMs, blanks, splits and replicates.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Alternative BRB personnel have verified the significant results outlined in this report. It is considered that the Company is using industry standard techniques for sampling and using independent laboratories with the inclusion of Company standards on a routine basis.
	The use of twinned holes.	n/a
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary geological and sampling data were recorded digitally and on hard copy respectively, and are subsequently transferred to a digital database where it

Criteria	JORC Code explanation	Commentary
)		is validated by experienced database personnel assisted by the geological staff. Assay results are merged with the primary data using established database protocols run in house by BRB.
	Discuss any adjustment to assay data.	No adjustments or calibrations were undertaken other than to average any repeated analysis for each individual sample.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collars are initially located by handheld GPS and then picked up by an accredited surveyor. GPS elevation values are corrected where necessary using a digital elevation model from a LIDAR survey. Expected accuracy is +/-4m for easting, northing and RL (GPS) and +/-0.1m or less for surveyed and LIDAR elevation point data. All diamond holes are gyro surveyed for rig alignment and downhole at the completion of the hole.
	Specification of the grid system used.	The grid system is GDA94 MGA, Zone 51.
	Quality and adequacy of topographic control.	As detailed above.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill holes are variable spacings. Diamond drill holes are drilled selectively, mainly to clarify structure or to assess the depth potential.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The reported drilling is reconnaissance in nature at this stage.
	Whether sample compositing has been applied.	No sample compositing has been applied to diamond drill core.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Angled diamond drilling has so far confirmed three mineralisation orientations. The extent, geometry and plunge of the various structural "domains" and how they interact is still being resolved. Further detailed drilling is needed to confidently quantify the degree of sample bias arising from drill orientation (positive or negative).
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Sample bias arising from orientation is discussed above.
Sample security	The measures taken to ensure sample security.	Diamond drill samples submitted were systematically numbered and recorded, bagged in labelled polyweave sacks

Crite	eria	JORC Code explanation	Commentary
			and dispatched in batches to the laboratory's Kalgoorlie facility by BRB personnel. The laboratory confirms receipt of all samples on the submission form on arrival.
			All assay pulps are retained and stored in a Company facility for future reference if required.
Audit revie		The results of any audits or reviews of sampling techniques and data.	No formal audits/reviews have been conducted on sampling technique or data to date. However a scanning of sample quality (recovery, wetness and contamination) as recorded by the geologist on the drill rig against assay results occurs with no obvious issues identified to date.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The diamond drill holes are located on tenement M28/388, which is held 100% by BRB. There are no material interests or issues associated with the tenement.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical holders of the Project area include Poseidon Gold, WMC, Mt Kersey Mining and Great Gold Mines.
		Vertical rotary air blast and aircore drilling undertaken in the period 1991 to 1998 identified a zone of strong gold anomalism that extends over a potential distance of 4km under thin (5-10m) cover (maximum grade of 4m at 0.71g/t Au).
		Although the prospectivity of the trend was recognised by previous explorers, rigorous anomaly definition and appropriate follow-up of encouraging results did not occur, apparently due to "non-geological" factors, including inconvenient tenement boundaries at the time of exploration and changes in company priorities and market conditions.
Geology	Deposit type, geological setting and style of mineralisation.	BRB is targeting Archean orogenic gold mineralisation near major faults.
		Gold is associated with subsidiary faults of the Claypan Shear Zone and occurs

Criteria	JORC Code explanation	Commentary
		preferentially in the Fe-rich part of a fractionated dolerite in an area of shallow (5m to 20m) transported cover. The dolerite is folded into a domal geometry between two major shear zones ("domain" boundaries) that converge and bend in the vicinity of the project.
		The main exploration target is high-grade lode, stockwork, disseminated and quartz vein gold mineralisation hosted by different phases of the fractionated dolerite.
Drill hole Information	A summary of all information material to the understanding of the exploration results	Refer to Appendix 1 for significant results from the diamond drilling.
	 including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole 	Drill hole locations are described in the body of the text, in Appendix 1 and on related Figures.
	 collar; elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length. 	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	Grades are reported above a nominal lower cut-off grade of 0.2g/t Au in areas of reconnaissance drilling. In known mineralised areas grades are reported above a nominal lower cut-off grade of 0.5g/t Au. No top-cuts have been applied.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All reported diamond drill assay results have been length weighted (arithmetic length weighting).
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None undertaken.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a	All drill hole intercepts are measured in downhole metres (criteria for detailed estimate of true width not yet at hand unless otherwise stated). At this stage the main primary mineralised structural orientation(s) are still being ascertained and are inconclusive.

	Criteria	JORC Code explanation	Commentary
2		clear statement to this effect (eg. 'down hole length, true width not known').	The orientation of the drilling may introduce some sampling bias (positive or negative).
	Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures and Tables in the body of the text.
	Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Grades are reported above a lower cut- off grade of 0.2g/t Au in areas of reconnaissance drilling. In known mineralisaed areas grades are reported above a nominal lower cut-off grade of 0.5g/t Au. No top-cuts have been applied.
	Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.
	Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main	Further work is planned as stated in this announcement.
		geological interpretations and future drilling areas, provided this information is not commercially sensitive.	